Analytic Learning Methods for Pattern Recognition
Produktinformationen "Analytic Learning Methods for Pattern Recognition"
This textbook is a consolidation of learning methods which comes in an analytic form. The covered learning methods include classical and advanced solutions to problems of regression, minimum classification error, maximum receiver operating characteristics, bridge regression, ensemble learning and network learning. Both the primal and dual solution forms are discussed for over-and under-determined systems. Such coverage provides an important perspective for handling systems with overwhelming samples or systems with overwhelming parameters. For goal driven classification, the solutions to minimum classification-error, maximum receiver operating characteristics, bridge regression, and ensemble learning represent recent advancements in the literature. In this book, the exercises offer instructors and students practical experience with real-world applications.
Autor: | Lin, Zhiping Liu, Simon Toh, Kar-Ann Zhuang, Huiping |
---|---|
ISBN: | 9789819621507 |
Verlag: | Springer Singapore |
Sprache: | Englisch |
Produktart: | Gebunden |
Erscheinungsdatum: | 14.05.2025 |
Verlag: | Springer Singapore |
Schlagworte: | Analytic Learning Artificial Intelligence Bridge Regression Deep Learning Ensemble Learning Machine Learning Maximum Receiver Operating Characteristics Minimum Classification Error Network Learning Penalized Learning |