Combinatorial Machine Learning

Produktinformationen "Combinatorial Machine Learning"
Decision trees and decision rule systems are widely used in different applicationsas algorithms for problem solving, as predictors, and as a way forknowledge representation. Reducts play key role in the problem of attribute(feature) selection. The aims of this book are (i) the consideration of the setsof decision trees, rules and reducts; (ii) study of relationships among theseobjects; (iii) design of algorithms for construction of trees, rules and reducts;and (iv) obtaining bounds on their complexity. Applications for supervisedmachine learning, discrete optimization, analysis of acyclic programs, faultdiagnosis, and pattern recognition are considered also. This is a mixture ofresearch monograph and lecture notes. It contains many unpublished results.However, proofs are carefully selected to be understandable for students.The results considered in this book can be useful for researchers in machinelearning, data mining and knowledge discovery, especially for those who areworking in rough set theory, test theory and logical analysis of data. The bookcan be used in the creation of courses for graduate students.
Autor: Moshkov, Mikhail Zielosko, Beata
ISBN: 9783642209949
Verlag: Springer Berlin
Auflage: 1
Sprache: Englisch
Seitenzahl: 182
Produktart: Gebunden
Erscheinungsdatum: 29.06.2011
Verlag: Springer Berlin
Untertitel: A Rough Set Approach
Schlagworte: Combinatorial Machine Learning Computational Intelligence Machine Learning Rough Sets

Verwandte Artikel

Combinatorial Machine Learning
ISBN: 9783642269011
106,99 €*